

Deep Learning meets Spatial Transformations vol. 1 Tomáš Karella

Outline

- Motivation
- Architecture
- Experiments

JADERBERG, Max, et al. Spatial transformer networks. *Advances in neural information processing systems*, 2015, 28.

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Motivation

- "Invariant" in CNN models
- "Competitive" on tiny HW

Architecture

Principle

- Spatial transformer module
 - small
 - learnable (differentiable)
 - adjustable class of transformations
 - all channels
- Transformation
 - parameters dependent on input image
 - grid generator
 - sampling

Architecture

Localisation Network

- INPUT: $U \in \mathbb{R}^{H imes W imes C}$
- OUTPUT: θ parameters of transformation
- Localisation Network: $heta=f_{loc}(U)$

• Localisation function could have any form FC, CNN... (But differentiable)

Sampling Grid

- Output pixels: $G = G_i$, where $G_i = (x_i^t, y_i^t)$
- Source coordinates: (x_i^s, y_i^s)
- Affine transformation example:

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \mathcal{T}_{\theta}(G_i) = \mathbf{A}_{\theta} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix} = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$

Transformations

- cropping, translation, isotropic scaling
- plane projective transformation
- differentiable with respect to the parameters

$$\mathbf{A}_{\theta} = \left[\begin{array}{ccc} s & 0 & t_x \\ 0 & s & t_y \end{array} \right]$$

Image Sampling

- input:
 - feature map $~~U \in \mathbb{R}^{H imes W imes C}$ 0
 - sampling points $T_{\theta}(G) \to (x_i^s, y_i^s)$ ut: feature map $V \in \mathbb{R}^{H' \times W' \times C}$ Ο
- output:
 - 0
- Image sampling function :
 - differentiable 0
 - Ο
 - interpolation kernel k() learnable kernel parameters Φ_x, Φ_y Ο

$$V_{i}^{c} = \sum_{n}^{H} \sum_{m}^{W} U_{nm}^{c} k(x_{i}^{s} - m; \Phi_{x}) k(y_{i}^{s} - n; \Phi_{y}) \ \forall i \in [1 \dots H'W'] \ \forall c \in [1 \dots C]$$

Image Sampling - example

$$V_{i}^{c} = \sum_{n}^{H} \sum_{m}^{W} U_{nm}^{c} \max(0, 1 - |x_{i}^{s} - m|) \max(0, 1 - |y_{i}^{s} - n|)$$

$$\frac{\partial V_{i}^{c}}{\partial U_{nm}^{c}} = \sum_{n}^{H} \sum_{m}^{W} \max(0, 1 - |x_{i}^{s} - m|) \max(0, 1 - |y_{i}^{s} - n|)$$

$$\frac{\partial V_{i}^{c}}{\partial x_{i}^{s}} = \sum_{n}^{H} \sum_{m}^{W} U_{nm}^{c} \max(0, 1 - |y_{i}^{s} - n|) \begin{cases} 0 & \text{if } |m - x_{i}^{s}| \ge 1\\ 1 & \text{if } m \ge x_{i}^{s}\\ -1 & \text{if } m < x_{i}^{s} \end{cases}$$

Spatial Transformer Networks

- self-contained module
- downsample, resample
- multiple or parallel

Experiments

Distorted MNIST

Street View House Numbers

CUB-200-2011 - Classification

Model	
Cimpoi '15 [4]	66.7
Zhang '14 [30]	74.9
Branson '14 [2]	75.7
Lin '15 [20]	80.9
Simon '15 [24]	81.0
CNN (ours) 224px	82.3
2×ST-CNN 224px	83.1
2×ST-CNN 448px	83.9
4×ST-CNN 448px	84.1

Conclusion

Spatial Transformer

Thank you for listening

